metabelian, supersoluble, monomial
Aliases: C102.4C4, C52⋊12M4(2), Dic5.3Dic5, Dic5.15D10, C52⋊3C8⋊6C2, C10.40(C2×F5), (C2×C10).11F5, C5⋊2(C4.Dic5), (C2×Dic5).5D5, (C5×Dic5).7C4, C10.6(C2×Dic5), (C2×C10).2Dic5, C22.(D5.D5), C5⋊5(C22.F5), (C10×Dic5).6C2, (C5×Dic5).19C22, C2.6(C2×D5.D5), (C5×C10).25(C2×C4), SmallGroup(400,147)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C102.C4
G = < a,b,c | a10=b10=1, c4=b5, ab=ba, cac-1=a-1b5, cbc-1=b7 >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 6 4 9 2 7 5 10 3 8)(11 20 13 17 15 19 12 16 14 18)(21 24 27 30 23 26 29 22 25 28)(31 38 35 32 39 36 33 40 37 34)
(1 38 20 29 7 33 12 24)(2 32 16 23 8 37 13 28)(3 36 17 27 9 31 14 22)(4 40 18 21 10 35 15 26)(5 34 19 25 6 39 11 30)
G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,6,4,9,2,7,5,10,3,8)(11,20,13,17,15,19,12,16,14,18)(21,24,27,30,23,26,29,22,25,28)(31,38,35,32,39,36,33,40,37,34), (1,38,20,29,7,33,12,24)(2,32,16,23,8,37,13,28)(3,36,17,27,9,31,14,22)(4,40,18,21,10,35,15,26)(5,34,19,25,6,39,11,30)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,6,4,9,2,7,5,10,3,8)(11,20,13,17,15,19,12,16,14,18)(21,24,27,30,23,26,29,22,25,28)(31,38,35,32,39,36,33,40,37,34), (1,38,20,29,7,33,12,24)(2,32,16,23,8,37,13,28)(3,36,17,27,9,31,14,22)(4,40,18,21,10,35,15,26)(5,34,19,25,6,39,11,30) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,6,4,9,2,7,5,10,3,8),(11,20,13,17,15,19,12,16,14,18),(21,24,27,30,23,26,29,22,25,28),(31,38,35,32,39,36,33,40,37,34)], [(1,38,20,29,7,33,12,24),(2,32,16,23,8,37,13,28),(3,36,17,27,9,31,14,22),(4,40,18,21,10,35,15,26),(5,34,19,25,6,39,11,30)]])
46 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 5C | ··· | 5G | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 10G | ··· | 10U | 20A | ··· | 20H |
order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | ··· | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 2 | 2 | 4 | ··· | 4 | 50 | 50 | 50 | 50 | 2 | ··· | 2 | 4 | ··· | 4 | 10 | ··· | 10 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | - | + | + | - | |||||||
image | C1 | C2 | C2 | C4 | C4 | D5 | M4(2) | Dic5 | D10 | Dic5 | C4.Dic5 | F5 | C2×F5 | C22.F5 | D5.D5 | C2×D5.D5 | C102.C4 |
kernel | C102.C4 | C52⋊3C8 | C10×Dic5 | C5×Dic5 | C102 | C2×Dic5 | C52 | Dic5 | Dic5 | C2×C10 | C5 | C2×C10 | C10 | C5 | C22 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 4 | 4 | 8 |
Matrix representation of C102.C4 ►in GL6(𝔽41)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 37 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
0 | 4 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(41))| [16,0,0,0,0,0,0,23,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,16,0,0,0,0,0,0,18,0,0,0,0,0,0,37,0,0,0,0,0,0,10],[0,8,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C102.C4 in GAP, Magma, Sage, TeX
C_{10}^2.C_4
% in TeX
G:=Group("C10^2.C4");
// GroupNames label
G:=SmallGroup(400,147);
// by ID
G=gap.SmallGroup(400,147);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,50,1924,8645,2897]);
// Polycyclic
G:=Group<a,b,c|a^10=b^10=1,c^4=b^5,a*b=b*a,c*a*c^-1=a^-1*b^5,c*b*c^-1=b^7>;
// generators/relations
Export